
▪ Growing demand for lightweight and efficient energy storage solutions 

in aerospace due to the industry’s shift toward electrification.

▪ Traditional battery systems, essential for electric aircraft, contribute 

significant weight, limiting range and overall performance.

▪ Reliance on traditional fuels persists due to their higher energy density 

compared to lithium batteries.

▪ The research investigates Multifunctional Energy Storage Composites 

(MESC) as a potential solution to integrate energy storage directly into 

structural components.

▪ MESC offers a novel approach to reducing weight in aerospace design.

▪ The research assesses the effectiveness of these methods in achieving 

weight reduction.

▪ The research evaluates the ease of implementation of these methods 

in practical aerospace applications.
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This research investigates the innovative design of a battery-integrated 

structure using Multifunctional Energy Storage Composites (MESC). By 

embedding batteries within the existing structure, the design aims to 

achieve substantial weight reduction while ensuring structural integrity. 

The study details the fabrication process of MESC, evaluates the use of 

PCBs for wire management, and explores the use of foam for gap filling. It 

also considers the broader implications for future aerospace applications. 

▪ To design a MESC structure to achieve weight reduction

▪ To evaluate the mechanical properties and energy efficiency of the MESC

▪ Develop a custom PCB to improve battery connections and enhance safety

▪ Explore the use of liquid foam and other substances as gap fillers for MESC 

to optimize structural integrity and performance

▪ To assess weight reductions and range extension of MESC implementation

Fabrication Method:
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Assembly:

Exploded View of a Composite Battery Box Beam Assembly Featuring CFRP and Liquid Foam 
Reinforcement

Integrating energy storage directly into the structure of an aircraft poses 

significant challenges. Current approach of soldering wires directly to 

battery terminals approach is hazardous and prone to short. 

This PCB uses integrated traces for secure and reliable connections.

Another critical aspect of this research is the choice of polyurethane 

liquid foam for filling gaps within the MESC-integrated structure. Injecting 

liquid foam directly into the structure offers significant advantages over 

tediously manually cutting and placing foam pieces. 

This research shows that MESCs can significantly reduce weight or increase battery 

capacity while preserving structural integrity. By developing solutions such as a 

custom PCB for secure battery connections and utilizing polyurethane liquid foam 

for gap filling, the study addresses key challenges, simplifies the assembly process, 

and enhances the safety and performance of the aircraft.
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To address these issues, we explored alternative methods for connecting 

batteries within the composite structure. Our solution involved 

developing a custom Printed Circuit Board (PCB) design that is spot-

welded to the battery terminals, eliminating the need for loose wires.

Process of Pouring and Curing 
Polyurethane Liquid Foam
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Effect of GCTP Ratio on Aircraft Range (Variable and Fixed Total Weight)

Gravimetric Cell-to-Pack (GCTP) Ratio
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